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Abstract: We carry out the renormalization and the Symanzik O(a)-improvement pro-

gramme for the static vector current in quenched lattice QCD. The scale independent

ratio of the renormalization constants of the static vector and axial currents is obtained

non-perturbatively from an axial Ward identity with Wilson-type light quarks and various

lattice discretizations of the static action. The improvement coefficients cstat
V

and bstat
V

are

obtained up to O(g4
0)-terms by enforcing improvement conditions respectively on the ax-

ial Ward identity and a three-point correlator of the static vector current. A comparison

between the non-perturbative estimates and the corresponding one-loop results shows a

non-negligible effect of the O(g4
0)-terms on the improvement coefficients but a good accu-

racy of the perturbative description of the ratio of the renormalization constants.
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1. Introduction

Semileptonic decays of B-mesons constitute a very important source of experimental in-

formation in B-physics. They have been and are currently being investigated as a part of

the research programmes of BaBar [1] and CLEO [2]. The prototype for such decays is

B0 → π−ℓ+ν. Once the amplitude of this process is known, an experimental measurement

of its branching ratio allows in principle to extract the CKM matrix element |Vub|. From

a theoretical point of view, the transition is mediated by the heavy-light vector current,

and the problem of knowing the decay amplitude amounts to calculating the QCD matrix

element

〈π(p)|Vµ|B(k)〉 =

(

k + p − q
m2

B − m2
π

q2

)

µ

f+(q2) +
m2

B − m2
π

q2
qµf0(q

2) , (1.1)

or equivalently the form factors f+/0(q
2), with q = k−p the 4-momentum transferred from

the B-meson to the pion.

Given the large mass of the b-quark, a direct lattice calculation of eq. (1.1) requires

tiny lattice spacings (a ≪ 1/(5GeV)) and big volumes (L > 1.5 fm) in order to correctly

reproduce the quark dynamics without squeezing the B-meson at reasonably small light-

quark masses. Various solutions have been proposed to overcome this difficulty: the reader

is referred to [3, 4] for recent reviews. Among these we mention the Heavy Quark Effective

Theory (HQET) and the Step Scaling Method (SSM).
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In HQET eq. (1.1) is expanded in inverse powers of the b-quark mass. The leading

contribution, also known as the static approximation, describes the heavy quark in terms

of a renormalizable effective field theory. Although lattice simulations in the original for-

mulation [5] were hampered by large statistical fluctuations due to self-energy effects of the

heavy propagator, thanks to the recent introduction of new lattice regularizations [6] it is

now possible to simulate static quarks with much improved numerical precision.

The SSM, a relativistic technique based on finite size scaling, has been proposed some

years ago by the Tor Vergata group in relation to a study of the heavy-light decay con-

stants [7] and meson masses [8]. It has been recently shown in [9] that combining the SSM

with HQET enables a strict control of the mass extrapolations and a consequent reduction

of the corresponding systematic uncertainties.

From this point of view it would be of considerable interest to extend the combined

approach “HQET + SSM” to eq. (1.1), since a first attempt to apply the Tor Vergata

method to the form factors has been recently presented in [10]. The goal is ambitious in

that observables such as eq. (1.1) are intrinsically more complex than a decay constant or a

meson mass, owing to the appearance of an additional mass scale to be identified with q2.

In this paper we concentrate on HQET. In view of a non-perturbative computation of

eq. (1.1), the static vector current must first be non-perturbatively renormalized. This task

has been partially accomplished, since in the static approximation the spatial components

V stat
k are renormalized by the same renormalization constant Zstat

A
as the temporal com-

ponent of the static axial current Astat
0 . The Renormalization Group (RG) running of the

latter has been computed both in the quenched approximation [11] and with two dynamical

quarks [12]. In order to compute the renormalization constant Zstat
V

of the temporal com-

ponent of the static vector current V stat
0 , we derive an axial Ward identity (WI), much in

the spirit of [13, 14], relating Zstat
V

to Zstat
A

. The scale independent ratio Zstat
A

/Zstat
V

is then

computed through an explicit implementation of the WI in the Schrödinger functional (SF)

at the chiral point. On-shell O(a)-improvement at zero light-quark mass is obtained by

adding a single counter-term to the static vector current, proportional to the improvement

coefficient cstat
V

, which is then tuned according to the request that the axial WI be satisfied

at finite lattice spacing up to O(a2)-terms.

The improvement of the static vector current V stat
0 at non-zero light-quark mass, re-

alized in principle through the introduction of a second improvement coefficient bstat
V

, is

not easily achievable in terms of the WI, which takes its simplest form in the chiral limit.

For this reason, we adopt a different improvement condition, i.e we obtain bstat
V

by im-

posing that the ratio of a three-point SF correlator of the static vector current at zero

and non-zero light-quark mass be the same in two different static regularizations up to

O(a2)-terms, thus determining the difference ∆bstat
V

corresponding to the chosen actions.

This procedure repeats the one adopted in [6] for the determination of bstat
A

. In order to

isolate the value of bstat
V

corresponding to all the static discretizations, the knowledge of

bstat
V

is required for at least one of them. This is a difficult problem, which we solve only

approximately by computing bstat
V

at one-loop order in perturbation theory for the static

actions with the simplest lattice Feynman rules, i.e. the Eichten-Hill (EH) and the APE

ones. This somewhat unsatisfactory solution introduces O(g4
0) systematic uncertainties,
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which are discussed in detail.

Other appealing applications where the static vector current plays a rôle can be found

within the domain of twisted mass QCD [15, 16], where the static axial current acquires

a vector component after a twist rotation of the light-quark fields. This is the case, for

instance, with the computation of Bstat
B , for which the matrix elements of the ∆B = 2

four-fermion operators have to be normalized by appropriate bilinear correlators of the

static axial current [17].

The paper is organized as follows. The axial WI is derived in section 2, where the

notation is also established. Its implementation in the framework of the SF is discussed in

section 3. Section 4 is devoted to a one-loop perturbative analysis of the lattice artefacts

in various WI topologies. In section 5 we present our non-perturbative results for the

improvement coefficient cstat
V

and the O(a)-improved ratio Zstat
A

/Zstat
V

, and in section 6 we

discuss the improvement coefficient bstat
V

. Conclusions are drawn in section 7. Additional

tables containing perturbative and non-perturbative results have been collected in appendix

A.

2. Formal derivation of the axial WI

As for the theoretical derivation of the axial WI, we follow the approach of [18, 19]. For

the moment no attention is paid to the specific regularization of the theory. We assume

a fermion content with an isospin doublet of degenerate light-quarks ψT = (ψ1, ψ2) and

a single heavy-quark, described by a pair of static fields (ψh, ψh̄). In order to set up

the notation, we introduce the light-quark isovector axial and vector currents and the

pseudoscalar density

Aa
µ(x) = ψ̄(x)γµγ5

1

2
τaψ(x) , (2.1)

V a
µ (x) = ψ̄(x)γµ

1

2
τaψ(x) , (2.2)

P a(x) = ψ̄(x)γ5
1

2
τaψ(x) , (2.3)

as well as their heavy-light companions (for which we explicitly indicate light-quark flavour

indices)

Akh
µ (x) = ψ̄k(x)γµγ5ψh(x), (2.4)

V kh
µ (x) = ψ̄k(x)γµψh(x), (2.5)

P hk(x) = ψ̄h(x)γ5ψk(x) , k = 1, 2 . (2.6)

The general WI follows from the invariance of the path integral representation of

correlation functions under chiral rotations of the light-quark fields. In particular, we

consider an axial variation

δa
A
ψ(x) = ωa(x)

1

2
τaγ5ψ(x) , δa

A
ψ̄(x) = ωa(x)ψ̄(x)γ5

1

2
τa , (2.7)

where τa denotes a Pauli matrix acting on the isospin space and ωa(x) is a smooth function

which vanishes outside some bounded region R. Since the Pauli matrices are traceless,
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the functional integration measure is invariant under eq. (2.7) and we conclude that the

correlation function of a given operator O satisfies the equation

〈Oδa
A
S〉 = 〈δa

A
O〉 , (2.8)

where

δa
A
S =

∫

R
d4x ωa(x)

{

−∂µAa
µ(x) + 2mP a(x)

}

(2.9)

represents the axial variation of the light-quark action and m denotes the PCAC quark

mass. We assume in what follows that O factorizes into the product of two operators Oint

and Oext, polynomials in the basic fields and localized in the interior and exterior of R

respectively. Accordingly, eq. (2.8) reads

〈OintOextδ
a
A
S〉 = 〈Oextδ

a
A
Oint〉 . (2.10)

We now concentrate on the isovector component a = 1. In our specific application we

choose Oint(x) = V 1h
0 (x) for x ∈ R and Oext(y) = P h2(y) for y /∈ R, thus obtaining

〈A2h
0 (x)P h2(y)〉 = 2〈V 1h

0 (x)P h2(y)

∫

R
d4z

{

∂µA1
µ − 2mP 1

}

〉 . (2.11)

If we further require R to be a time-oriented cylinder with periodic b.c. in space, i.e.

R = {x : t1 ≤ x0 ≤ t2}, (2.12)

we immediately see that the space derivatives of the light axial current on the right hand

side of eq. (2.11) drop out, while the temporal derivative gives rise to a boundary contri-

bution. After a space integration of both sides over x, we arrive at our final expression

〈Q2h
A

(x0)P
h2(y)〉 = 2〈Q1h

V
(x0)P

h2(y)

{

[

Q1
A
(t2) − Q1

A
(t1)

]

− 2m

∫

R
d4zP 1(z)

}

〉 , (2.13)

where x0 ∈ [t1, t2], y0 /∈ [t1, t2] and we have introduced the axial and vector charges

Qa
A
(x0) =

∫

d3x Aa
0(x) , (2.14)

Qkh
A

(x0) =

∫

d3x Akh
0 (x) , (2.15)

Qkh
V

(x0) =

∫

d3x V kh
0 (x) . (2.16)

eq. (2.13) has to be understood as a relation among renormalized quantities. It should be

observed that Q1
A

and P 1 consist of two contributions in the flavour space, corresponding

to the non-zero matrix elements of τ1. Out of them, only those with flavour content ψ̄2ψ1

contribute to the right hand side of the WI. These will be denoted respectively Q21
A

and P 21.

– 4 –



J
H
E
P
0
1
(
2
0
0
8
)
0
2
1

3. Lattice implementation in the SF

The axial WI admits a straightforward lattice implementation. We adopt here a SF topol-

ogy where periodic boundary conditions (up to a phase θ for the light-quark fields) are

set up on the spatial directions and Dirichlet boundary conditions are imposed on time at

x0 = 0, T . For a discussion of the original application of the SF to the simplest WI, namely

the PCAC, we refer the reader to [20]. Unexplained notation closely follows [21].

Although the SF is formally defined in the continuum, we find it convenient to work

at finite lattice spacing. Light quarks are assumed to be described by the O(a)-improved

Wilson action, with the usual Sheikholeslami-Wohlert term in the bulk and boundary

counter-terms proportional to the improvement coefficients ct−1 and c̃t−1. No background

field is assumed. The static quark is instead defined in terms of the action

Sstat
W [ψh, ψ̄h, ψh̄, ψ̄h̄, U ] = a4

∑

x

[

ψ̄h(x)DW∗
0 ψh(x) − ψ̄h̄(x)DW

0 ψh̄(x)
]

, (3.1)

where the forward and backward covariant derivatives

DW
0 ψ(x) =

1

a

[

W (x, 0)ψ(x + a0̂) − ψ(x)
]

,

DW∗
0 ψ(x) =

1

a

[

ψ(x) − W †(x − a0̂, 0)ψ(x − a0̂)
]

, (3.2)

depend upon a parallel transporter W , which can be variously defined. In this paper we

consider four possible versions, namely EH, APE, HYP1 and HYP2, respectively corre-

sponding to

WEH(x, 0) = U(x, 0) ,

WAPE(x, 0) = V (x, 0) ,

WHYP1(x, 0) = V HYP
~α (x, 0)

∣

∣

~α=(0.75,0.6,0.3)
,

WHYP2(x, 0) = V HYP
~α (x, 0)

∣

∣

~α=(1.0,1.0,0.5)
. (3.3)

In the above definitions V (x, 0) represents the average of the six staples surrounding the

gauge link U(x, 0), while V HYP(x, 0) denotes the temporal HYP link of [22], with the

approximate SU(3) projection of [6].

In order to translate eq. (2.13) into the language of the SF, we insert the static vector

current in the middle of the bulk, i.e. at x0 = T/2. The support region R is then defined by

localizing t1 and t2 at different points, with the understanding that 0 < t1 < x0 < t2 < T in

order to avoid possible contact terms. The pseudoscalar density is replaced by a boundary

source uniformly distributed over the spatial coordinates, i.e.

Σh2 =
a6

L3

∑

yz

ζ̄h(y)γ5ζ2(z) . (3.4)
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On-shell O(a)-improvement of the quark currents requires the introduction of operator

counter-terms, whose structure has been discussed in [20, 23]. Accordingly, we introduce

the O(a)-improved currents

Aij;I
0 (x) = Aij

0 (x) + acAδAij
0 (x) , δAij

0 (x) =
1

2
(∂0 + ∂∗

0)ψ̄i(x)γ5ψj(x) ; (3.5)

Akh;I
0 (x) = Akh

0 (x) + acstat
A

δAkh
0 (x) , δAkh

0 (x) = ψ̄k(x)γjγ5
1

2
(
←−
∇j +

←−
∇∗

j)ψh(x) ; (3.6)

V kh;I
0 (x) = V kh

0 (x) + acstat
V

δV kh
0 (x) , δV kh

0 (x) = ψ̄k(x)γj
1

2
(
←−
∇j +

←−
∇∗

j )ψh(x) ; (3.7)

and the O(a)-improved charges

Qij;I
A (x0) = a3

∑

x

Aij;I
0 (x) = Qij

A (x0) + acAδQij
A (x0) , (3.8)

Qkh;I
A (x0) = a3

∑

x

Akh;I
0 (x) = Qkh

A
(x0) + acstat

A
δQkh

A
(x0) , (3.9)

Qkh;I
V (x0) = a3

∑

x

V kh;I
0 (x) = Qkh

V
(x0) + acstat

V
δQkh

V
(x0) , (3.10)

where, as also explained at the end of last section, the notation Oij always refers to a

flavour content ψ̄iψj . The improvement coefficients cA, cstat
A

and cstat
V

depend on the gauge

coupling and are perturbatively expanded according to

c = c(1)g2
0 + c(2)g4

0 + O(g6
0) . (3.11)

In view of phenomenological applications, it is useful to allow for renormalized currents

at non-zero light-quark mass. O(a)-improvement requires in this case the introduction of

additional mass counter-terms, proportional to mq = m − mcr. The relations between

renormalized currents and their bare counterparts explicitly read

Aij;I
0,R(x) = ZA[1 + bAamq]A

ij;I
0 (x) ,

Akh;I
0,R (x) = Zstat

A
[1 + bstat

A
amq]A

kh;I
0 (x) ,

V kh;I
0,R (x) = Zstat

V
[1 + bstat

V
amq]V

kh;I
0 (x) . (3.12)

The SF implementation of the axial WI is then realized through the introduction of a

set of two- and three-point correlation functions,

hI
A
(x0) = 〈Q2h;I

A (x0)Σ
h2〉 ,

hI
VA

(x0, y0) = 〈Q1h;I
V (x0)Q

21;I
A (y0)Σ

h2〉 ,

hI
VP

(x0, y0) =
a3

L3

∑

y

〈Q1h;I
V (x0)P

21(y)Σh2〉 , (3.13)

which are graphically represented by the Feynman diagrams of figure 1. It should be

observed that the two-point correlator hI
A

satisfies the relation hI
A

= −2f stat,I
A with f stat,I

A

defined in eqs. (3.22-3.24) of [23]. Once the renormalized currents are expressed in terms of

– 6 –
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t1 t2

x0
γ0γ5γ5

hA(x0)

t1 t2
x0

γ0

γ0γ5

γ5

hVA(x0, t1)

t1 t2
x0

γ0

γ0γ5

γ5

hVA(x0, t2)

t1 t2
x0

γ0

γ5

γ5

hVP(x0, t)

Figure 1: Diagrammatic representation of the SF correlation functions of eq. (3.13). A single

(double) line describes the propagation of a light (static) quark.

T T/L x0/T t1/T t2/T

1 1 1/2 1/4 3/4

2 2 1/2 1/4 3/4

3 3/2 1/2 1/3 2/3

4 3 1/2 1/3 2/3

Table 1: Some topologies T of the WI.

the bare ones, the axial WI takes the form of a constraining relation among renormalization

constants. In the chiral limit it reduces to

R ≡
hI

VA
(x0, t2) − hI

VA
(x0, t1)

hI
A
(x0)

=
Zstat

A

Zstat
V

ZA

+ O(a2) . (3.14)

In order to pursue a numerical implementation of eq. (3.14), some geometrical param-

eters have to be specified, namely the ratios T/L, t1/T , t2/T and the θ-angle of the SF.

Concerning the latter, we consider three possible values, i.e. θ = 0.0, 0.5, 1.0. The other

parameters will instead be collectively referred to as the topology T of the WI. In table 1 we

list four possibilities. Each of them affects the noise-to-signal ratio of the non-perturbative

simulations in its own way and introduces specific cutoff effects in the ratio R at finite

lattice spacing. Therefore, a convenient choice of T imposes — at least theoretically –

a balance between the minimization of the lattice artefacts and the maximization of the

numerical signal.

We remark that eq. (3.14), which we use in order to determine cstat
V

, depends as well on

the improvement coefficients cA and cstat
A

. These have been determined respectively in [24]

and [6] and are taken as input parameters here. In particular, cstat
A

is analytically known

at one-loop order for the EH and APE actions, and effectively up to O(g4
0)-terms for the

HYP1 and HYP2 actions. Scaling tests of cstat
A

have been extensively discussed in [6], to

which the reader is referred for details. Here we stress that the lack of a full knowledge of

cstat
A

introduces systematic uncertainties at order O(g4
0) in the determination of cstat

V
. On

the other hand, the WI is independent of the boundary improvement coefficients ct and c̃t.

This has been explicitely checked in perturbation theory.

4. One-loop perturbative analysis of the WI

A first indication of the cutoff effects related to a given choice of the topology T can be

– 7 –
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 0.96

 0.98

 1

 1.02

 1.04

 0  0.005  0.01  0.015  0.02
R

(0
) (θ

,a
/L

)
(a/L)2

θ=0.0
θ=0.5
θ=1.0

Figure 2: Continuum approach of R(0) with topology T = 2.

obtained in principle from a one-loop perturbative calculation of the WI. We anticipate

that once the O(a)-improvement has been carried out, the residual lattice artefacts of O(a2)

have comparable size in the various topologies, so that a conclusive argument for the choice

of the preferred T has to follow from non-perturbative considerations. To show this, we

expand the ratio R in powers of the coupling, i.e.

R = R(0) + g2
0R

(1) + O(g4
0) . (4.1)

Each term of the perturbative expansion is a function of the bare quark mass m and must

be computed at m = mcr. Since the latter depends in turn upon the bare coupling, each

correlator h of eq. (3.13) has to be expanded according to

h = h(0)|m=0 + g2
0

[

h(1) + m(1)
cr ∂mh(0) + h

(1)
b

]

m=0
+ O(g4

0) , (4.2)

where ∂m indicates a partial derivative with respect to m and the subscript “b” denotes the

contribution of the boundary counter-terms proportional to c̃t − 1. The one-loop critical

mass m
(1)
cr is defined here by requesting that the O(a)-improved PCAC quark mass vanish.

Its values at finite lattice spacing are taken from [25, 26].

The ratio R is expected to be tree-level improved, since all the improvement counter-

terms start at O(g2
0). This expectation is confirmed by figure 2, where the approach of R(0)

to the continuum limit is reported for the topology T = 2. We observe that the slope of

R(0) increases with θ (the scaling is perfect at θ = 0.0) and is independent of T . It follows

that, in order to identify a better T , at least the one-loop contribution has to be worked

out explicitly.

The perturbative expansion of the two-point correlator hI
A

has been discussed in [23]

and will not be reviewed here. The one-loop coefficient of the three-point correlator h
I(1)
VA

receives contributions from Feynman diagrams corresponding to self-energy and tadpole

corrections of the single quark legs, plus vertex corrections with gluons propagating from

one leg to another.

Several possible improvement conditions may be imposed in order to tune c
stat(1)
V so

that the O(a)-improvement is realized at one-loop order. After some attempts, we found

that a reasonable definition is to enforce the equation

R(1)(θ1, a/L) = R(1)(θ2, a/L) + O
[

(a/L)2
]

, (4.3)
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EH APE

c
stat(1)
V 0.0048(3) 0.0185(3)

Table 2: c
stat(1)
V for the EH and APE actions.
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Figure 3: Continuum approach of c
stat(1)
V for the EH (left plot) and APE (right plot) actions.

Plots refer to the topology T = 2. Different choices of the θ-angles provide independent definitions

of c
stat(1)
V . Plotted points correspond to L/a = 8, . . . , 32.

which defines c
stat(1)
V up to O(a/L)-terms. Cutoff effects with the WI topology T = 2 are

reported in tables 6-7 and in figure 3 for the EH (left plot) and APE (right plot) actions

and three possible choices of the pair (θ1, θ2). The other topologies show similar lattice

artefacts. As expected, different definitions converge to the same continuum limit, which

is very small for the EH discretization, if compared to the size of the cutoff effects, and

somewhat larger for the APE action. It follows that the extrapolation of the lattice points

to the continuum is difficult and one should not expect a high numerical precision. In

order to reduce the size of the lattice artefacts, we have employed the blocking procedures

of [27, 28]. Results are reported in table 2. Our determination of c
stat(1)
V,EH is in good

agreement with the original estimate given by [29] in the framework of NRQCD.

Once the improvement coefficient c
stat(1)
V is known, the ratio R(1) can be calculated in

the O(a)-improved theory. In figure 4 its continuum approach is plotted vs. (a/L)2 for

all the topologies and the θ-angles. Corresponding data are reported in tables 8-9. The

main feature of the plots is the similarity of the various definitions, which differ by just a

few percent at the coarsest lattices. Nevertheless, some topologies are more sensitive to a

change of θ than others, e.g. T = 4 looks almost flat at θ = 1.0, while it has the largest

slope at θ = 0.0. Remarkably, the spread between different T ’s almost vanishes around

θ = 0.5, thus suggesting that this θ-value could be the most stable against variations of

the topology beyond perturbation theory.

We extract the common continuum limit of R(1) via the afore-mentioned blocking tech-
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EH APE

Zstat
A

/Zstat
V

1 − 0.0521(1)g2
0 1 − 0.0093(2)g2

0

Table 3: Zstat
A

/Zstat
V

at one-loop order for the EH and APE actions.
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Figure 4: Continuum approach of R(1) for the EH (upper plots) and APE (lower plots) actions.

Plots refer to various SF topologies and θ angles. Plotted points correspond to L/a = 10, . . . , 32

for T = 2, 4 and L/a = 12, . . . , 32 for T = 1, 3.

niques. Our best estimates are R
(1)
EH = 0.0644(1) and R

(1)
APE = 0.1072(2). In order to isolate

the ratio of the static renormalization constants Zstat
A

/Zstat
V

, the one-loop contribution of

ZA, i.e. ZA

(1) = −0.116458 [30, 31], has to be subtracted from R(1). Results are reported in

table 3. The value obtained with the EH action is not novel: it checks the one previously

found in [32, 14] within 3%.

5. Non-perturbative determination of Zstat
A

/Zstat
V

In order to simulate the WI non-perturbatively, we first address the choice of the geo-
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L/a β κ θ

8 6.0219 0.135081,0.1344011 0.0,0.5,1.0

10 6.1628 0.135647,0.1351239 0.0,0.5,1.0

12 6.2885 0.135750,0.1353237 0.0,0.5,1.0

16 6.4956 0.135593,0.1352809 0.0,0.5,1.0

Table 4: Simulation parameters used for the non-perturbative study of the improvement coefficients

cstat
V

, bstat
V

and the ratio Zstat
A

/Zstat
V

.

metrical parameters. Some numerical attempts suggest that the topology with the best

signal-to-noise ratio is also the one with the smallest aspect ratio T/L. This is largely

expected on the basis of [6], since the loss of signal is mainly related to the temporal ex-

tension of the static propagator, which for every T goes from the boundary to x0 = T/2.

Given the lack of a clear indication from perturbation theory concerning the preeminence

of a specific topology over the others, we decide to just follow the criterion of the signal-to-

noise ratio and to consequently adopt T = 1 for our non-perturbative study. Simulation

parameters are collected in table 4. They have been taken from [6] and correspond to a

physical size L = 2Lmax = 1.436r0 of the SF. Moreover, csw is non-perturbatively tuned

according to [24] and the boundary improvement coefficients ct and c̃t are respectively set

to their two- and one-loop values [21].

It is worth noting that with T = 1 the WI can be simulated directly at the chiral point,

with no need for a mass extrapolation in the way of [33]. The κ-values which have been

used are the ones reported on the left of the third column and correspond to κcr obtained

from the O(a)-improved PCAC relation [11, 34].

We also observe that the simulation at β = 6.1628 cannot be actually performed with

t1 = T/4 and t2 = 3T/4, since these are non-integer multiples of the lattice spacing in this

particular case. To avoid the problem, we take here t1 = 2a and t2 = 7a. This choice is

theoretically sound since no contact term turns up in the WI. It amounts to changing the

definition of cstat
V

by an O(a)-term and of the improved ratio Zstat
A

/Zstat
V

by an O(a2)-term

at that given β. Other choices are possible as well. The present one has the a posteriori

advantage that it makes the β-dependence of Zstat
A

/Zstat
V

smoother than other definitions.

To achieve a non-perturbative estimate of Zstat
A

/Zstat
V

we first have to properly tune the

improvement coefficient cstat
V

. We follow the perturbative definition introduced in eq. (4.3)

and impose the improvement condition

R(θ1, β) = R(θ2, β) + O(a2) , (5.1)

where, as already explained in section 3, the coefficients cstat
A

and cA are taken as input

parameters. We stress once more that since cstat
A

is known up to O(g4
0)-terms, this introduces

a systematic uncertainty in our computation, thus making the numerical estimate of cstat
V

only non-perturbatively effective. In principle, it could be possible to avoid this by enforcing
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two simultaneous conditions, i.e.

R(θ1, β) = R(θ2, β) + O(a2) ,

R(θ1, β) = R(θ3, β) + O(a2) , θ1 6= θ2 6= θ3 , (5.2)

from which cstat
A

and cstat
V

could be determined at the same time with no approximation.

Unfortunately, the resulting expressions for the improvement coefficients are quite involved

and characterized by a very poor signal. For this reason we are forced to resort to eq. (5.1).

Being R linearly dependent on cstat
V

, i.e.

R(θ, β) = r(θ, β) + cstat
V

(β)s(θ, β) , (5.3)

we obtain the improvement coefficient from the equation

cstat
V

(β) = −
r(θ1, β) − r(θ2, β)

s(θ1, β) − s(θ2, β)
+ O(a) . (5.4)

Results at the simulation points are reported in table 12 of appendix A. Statistical errors

have been computed through the jackknife method. In figure 5 the β-dependence of cstat
V

is

shown for different choices of the angles (θ1, θ2) and for different static discretizations. The

most noticeable feature seems to be the large discrepancy with respect to the perturbative

estimates given in the previous section. We also observe that the EH determination is quite

distinct from the other regularizations, which are instead close to each other.

The numerical values of cstat
V

should be independent of the choice of (θ1, θ2) up to O(a)-

effects. Therefore, the difference ∆cstat
V

= cstat
V

|(θ1,θ2) − cstat
V

|(θ′
1
,θ′

2
) is expected to decrease

at larger β-values. This is confirmed by our data.

As table 12 shows, the improvement condition with the best signal-to-noise ratio is

the one corresponding to (θ1, θ2) = (0.5, 1.0). This is also the one with the smallest

perturbative cutoff effects. A quadratic fit of it in the range of the Monte Carlo simulations

(6.0 ≤ β ≤ 6.5) leads to the parametrization

cstat
V,EH

= 0.694 − 0.732x + 0.330x2 , (5.5)

cstat
V,APE

= 0.421 − 0.531x + 0.360x2 , (5.6)

cstat
V,HYP1

= 0.453 − 0.584x + 0.421x2 , (5.7)

cstat
V,HYP2

= 0.494 − 0.528x + 0.404x2 ; x = β − 6 . (5.8)

The O(a)-improved ratio of the renormalization constants Zstat
A

/Zstat
V

corresponding

to this choice of cstat
V

is shown in figure 6; the same data are collected in table 13. To

extract this ratio out of R, we used the ALPHA determination of ZA reported in [35].

Since now all the improvement counter-terms have been taken into account, the definition

of Zstat
A

/Zstat
V

with θ = 0.0 has to agree up to O(a2)-terms with those at θ = 0.5 and

θ = 1.0, which have been used in order to tune the improvement coefficient. Indeed, it

can be seen from table 13 that the differences are zero within the statistical errors. Aside

the non-perturbative determination, also the one-loop estimates of table 3 are reported

in figure 6. The agreement is good with EH static fermions in the whole region explored
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Figure 5: β-dependence of cstat
V

for some choices of the pair (θ1, θ2) and of the static action. For the

sake of readability, points (diamonds) have been slightly shifted along the horizontal axis. Dashed

curves represent quadratic fits.

by the Monte Carlo simulations. It is good as well with the APE action at the largest

β-values. A quadratic fit (in the range 6.0 ≤ β ≤ 6.5) gives

[

Zstat
A

/Zstat
V

]

EH
(g0) = 0.953 + 0.0417x − 0.0828x2 , (5.9)

[

Zstat
A

/Zstat
V

]

APE
(g0) = 0.958 + 0.113x − 0.126x2 , (5.10)

[

Zstat
A

/Zstat
V

]

HYP1
(g0) = 0.963 + 0.109x − 0.131x2 , (5.11)

[

Zstat
A

/Zstat
V

]

HYP2
(g0) = 0.961 + 0.129x − 0.146x2 ; x = β − 6 . (5.12)

Eqs. (5.9)–(5.12) reproduce the numbers of table 13 within the statistical errors. For

convenience, we also report a parametrization of Zstat
A

/Zstat
V

with all the improvement

coefficients set to their respective values, but cstat
A

= cstat
V

= 0. With this choice, the WI is

not O(a)-improved. Definitions corresponding to different choices of the θ-angle differ now
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Figure 6: O(a)-improved ratio of the renormalization constants Zstat
A

/Zstat
V

for various static

actions. Different choices of θ correspond to independent definitions of the WI. For the sake of

readability, points (diamonds and triangles) have been slightly shifted along the horizontal axis.

Dashed curves represent quadratic fits.

by O(a)-terms, which are well above the statistical uncertainties. At θ = 0.5 we find

[

Zstat
A

/Zstat
V

]

EH
(g0) = 0.818 + 0.186x − 0.134x2 , (5.13)

[

Zstat
A

/Zstat
V

]

APE
(g0) = 0.917 + 0.176x − 0.165x2 , (5.14)

[

Zstat
A

/Zstat
V

]

HYP1
(g0) = 0.926 + 0.178x − 0.177x2 , (5.15)

[

Zstat
A

/Zstat
V

]

HYP2
(g0) = 0.978 + 0.158x − 0.179x2 ; x = β − 6 . (5.16)

Our final results, represented by eqs. (5.9)–(5.12) depend upon the choice of cstat
A

.

Adopting the determination of [6] introduces a systematic uncertainty at O(g4
0), which

propagates to the ratios Zstat
A

/Zstat
V

and can be easily estimated. We first observe that the

improvement coefficient cstat
V

is very sensitive to variations of cstat
A

. This is not surprising,

since both the counter-terms proportional to cstat
V

and cstat
A

are meant to cancel the O(a)-

lattice artefacts of the WI. Therefore, a change of O(1) in cstat
A

is expected to produce a

variation of the same order in cstat
V

via eq. (5.1). In practice, setting cstat
A

= 0 lowers the

estimates of eqs. (5.5)–(5.8) by 30% at the coarsest lattice spacing. Nevertheless, if the

new values of cstat
V

|cstat
A

=0 are introduced in the WI and the counter-term of the static axial
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Figure 7: Three-point SF correlator.

current is explicitly dropped out at denominator of eq. (3.14), the variation of Zstat
A

/Zstat
V

amounts to at most 1%. This is due to a very large numerical cancellation of cstat
A

within

the ratio R. It follows that eqs. (5.9)–(5.12) can be assigned a systematic uncertainty of

1%.

Concerning the systematic uncertainty of cstat
V

, which has a strong dependence upon

cstat
A

in our determination, we naively expect that physical matrix elements of the static

vector current will be only slightly affected by variations of cstat
V

, in strict analogy with

the static axial current, where a change of the operator counter-term is compensated by

an opposite variation in the renormalization constant, as shown in [36]. Unfortunately, we

have no quantitative elements at the moment to clarify if this is the case also for the static

vector current.

6. The improvement coefficient bstat
V

The axial WI at non-zero light-quark mass is complicated by the presence of a mass term

proportional to the temporal integral of the SF correlator hI

VP
introduced in eq. (3.13).

Since the integration region covers the whole interval [t1, t2], an integrable contact term

raises at y0 = x0 = T/2. Managing the integral can be disadvantageous in some cases: for

instance, in perturbation theory it requires a complete one-loop calculation for each value

of the integration variable, since no Fourier transform is defined in the SF along the time

direction. Therefore, in order to improve the static vector current out of the chiral limit,

it is easier to look for some more comfortable observable.

One attractive possibility is to consider a three-point SF correlator with the insertion

of the static vector current in the bulk. To this aim we define

M I(x0,m) = 〈Σ′21V 1h;I
0 (x)Σh2〉 , (6.1)

where Σh2 has been introduced in eq. (3.4) and

Σ′21 =
a6

L3

∑

y′z′

ζ̄ ′2(y
′)γ5ζ

′
1(z

′) (6.2)

is a relativistic pseudoscalar boundary source localized at x0 = T . Since we are interested

in massive light-quarks, we keep the mass dependence explicit in the definition of M I.

The flavour structure of the chosen valence operators allows for just one Wick contraction,

depicted in figure 7. To have it renormalized, all the logarithmic divergences must be
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0 corresponding to various combinations of the static

actions and for some choices of the θ-angle. To improve the readability, points (squares

and upper triangles) have been slightly shifted along the horizontal axis. Dashed lines

represent fits to a constant.

subtracted, both those related to the static vector current and the ones induced by the

boundary sources. In the O(a)-improved theory the renormalized correlator reads

M I
R
(x0,mR) = Zstat

V
Z3

ζ Zh
ζ {1 + bζamq}

3{1 + bstat
V

amq}M
I(x0,m) . (6.3)

In order to get rid of the renormalization constants, we construct the ratio of M I
R

at two

different values of the renormalized light-quark mass, i.e. LmR = 0.24 and LmR = 0. This

is not sufficient to isolate bstat
V

, since the improvement of the boundary light-quark source

contains bζ , which does not drop out in the ratio. Nevertheless, bζ is independent of the

static action. Therefore, it cancels when we enforce the improvement condition that the

ratio of the three-point SF correlator be the same with two different static actions S1 and

S2 up to O(a2)-terms, i.e.

{1 + bstat
V,S1

amq}
M I(T/2,m)

M I(T/2,mcr)

∣

∣

∣

∣

S1

= {1 + bstat
V,S2

amq}
M I(T/2,m)

M I(T/2,mcr)

∣

∣

∣

∣

S2

+ O(a2) . (6.4)

In the above equation, we decided to place the operator insertion in the middle of the

bulk and to choose T/L = 1. This improvement condition provides a non-perturbative

definition of ∆bstat
V

= bstat
V,S1

− bstat
V,S2

.
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Simulations have been performed according to the parameters reported in table 4. In

particular, the κ-values on the right of the third column correspond to LmR = 0.24, with

mR the quark mass renormalized in the SF scheme at scale µ = 1/(1.436r0). Numerical

results of ∆bstat
V

are reported in table 14 for the various independent combinations of the

static actions and the usual θ-angles. They are also represented in figure 6, where ∆bstat
V

/g2
0

is plotted vs. g2
0 . A remarkable feature of the results is their flatness in g2

0 . Since

bstat
V

=
1

2
+ b

stat(1)
V g2

0 + O(g4
0) , (6.5)

this could be interpreted as a good signal of scaling and could lead to the prompt conclusion

that ∆bstat
V

is not dominated by O(g4
0)-terms. Nevertheless, we observe that g2

0 varies from

0.924 to 0.996 in the range of the simulations, i.e. it changes by only 8%. Such a small

variation could be well compatible with a slight change of the differences ∆bstat
V

even in a

region not strictly close to the scaling one.

A second observation is that all the differences involving the EH action have a signif-

icant dependence on θ, with spreads varying from 30% to 60% at the various bare gauge

couplings. This is a clear indication that large non-perturbative O(a) lattice artefacts affect

our definition of bstat
V,EH

based on the three-point SF correlator M I. On the contrary, the

remaining differences, involving exclusively the ALPHA actions, are much more universal

in θ: in these cases the spread among different definitions stays always below 0.01.

A fit of ∆bstat
V

/g2
0 to a constant provides an effective non-perturbative parametrization

of the difference of the improvement coefficients in the region of the Monte Carlo simu-

lations. Since we have no theoretical argument to privilege one particular definition over

the others, we decide to average the results of the fits corresponding to the three θ-values

and to assign the averages an absolute uncertainty as large as the maximal discrepancy

between different θ-determinations. In this way we obtain

(∆bstat
V

)EH−APE = 0.19(8)g2
0 , (6.6)

(∆bstat
V

)EH−HYP1 = 0.18(8)g2
0 , (6.7)

(∆bstat
V

)EH−HYP2 = 0.27(9)g2
0 , (6.8)

(∆bstat
V

)APE−HYP1 = −0.004(2)g2
0 , (6.9)

(∆bstat
V

)APE−HYP2 = 0.078(7)g2
0 , (6.10)

(∆bstat
V

)HYP1−HYP2 = 0.082(7)g2
0 . (6.11)

In order to isolate the improvement coefficient bstat
V

corresponding to each static action,

we perform an analytical one-loop perturbative calculation of bstat
V,EH

and bstat
V,APE

. To this aim,

we expand the three-point SF correlator in powers of g2
0 , i.e.

M I(x0,m) = M (0)(x0,m
(0)) +

+g2
0

[

M I(1)
(

x0,m
(0)

)

+ m(1)∂mM (0)
(

x0,m
(0)

)

+ M
I(1)
b

(

x0,m
(0)

)]

+

+O(g4
0) , (6.12)
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Figure 8: Continuum approach of b
stat(1)
V for the EH (left plot) and APE (right plot) actions.

Different choices of the θ-angle provide independent definitions of b
stat(1)
V . Plotted points correspond

to L/a = 8, . . . , 46.

EH APE

b
stat(1)
V 0.013(1) -0.018(1)

Table 5: b
stat(1)
V for the EH and APE actions.

where the perturbative coefficients of the bare quark mass m(0) and m(1) are chosen ac-

cording to eqs. (3.29)-(3.30) of [37]. Here mR is defined as the renormalized quark mass

in the minimal subtraction scheme on the lattice at scale µ = 1/L. In this perturbative

calculation we impose the improvement condition

M I
R
(T/2, 0.24/L)

M I
R
(T/2, 0)

= const. + O(a2) , (6.13)

with aspect ratio T/L = 1 and θ = 0.0, 0.5, 1.0. When expanded in perturbation the-

ory, this equation provides for a definition of b
stat(1)
V + 3b

(1)
ζ up to O(a/L)-terms. Since

b
(1)
ζ = −0.06738(4) × CF has been previously calculated in [37], this is sufficient to isolate

b
stat(1)
V . Lattice data are reported in tables 10–11 and plotted in figure 8. Their continuum

extrapolation leads to the estimates quoted in table 5. These correspond in turn to an

exact one-loop difference

(∆bstat
V

)
(1)
EH−APE = 0.0324(4) , (6.14)

which is quite a bit off the central value of eq. (6.6). Clearly, this difference may be

attributed to the presence of non-negligible O(g4
0)-terms, which in principle could be there.

However, the systematic uncertainty which characterizes the definition of the improvement

coefficient with the EH action prevents us from making a more precise statement. For this

reason, we desist from quoting a final estimate of bstat
V,EH

. Instead, we use b
stat(1)
V,APE to solve
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Figure 9: Scaling plots for ξ(0.5, 1.0, 0.24/L). To improve the readability, some of the points (dia-

monds and triangles) have been slightly shifted along the horizontal axis. Dashed curves represent

independent linear fits in (a/L)2. Continuum extrapolated values are also shown.

eqs. (6.9)–(6.10) and quote

bstat
V,HYP1

≈
1

2
− 0.014(3)g2

0 + O(g4
0) , (6.15)

bstat
V,HYP2

≈
1

2
− 0.096(8)g2

0 + O(g4
0) . (6.16)

The reader should not be surprised to see that the difference (∆bstat
V

)
(1)
EH−APE given in

eq. (6.14) is more precise than the single values of bstat
V

reported in table 5. Indeed, the

continuum estimate of eq. (6.14) has been obtained by extrapolating the difference of the

lattice data reported in tables 10–11. Part of the cutoff effects drops out in this difference,

which makes the continuum extrapolation easier.

6.1 A scaling test for cstat
V

Our non-perturbative data enable a scaling test of the three-point SF correlator M I, useful

to assess the effectiveness of our numerical determination of cstat
V

. To this aim we introduce

the ratio

ξ(θ1, θ2,mR) =
M I(T/2,mR)|θ1

M I(T/2,mR)|θ2

, (6.17)

which has a well defined continuum limit, with a theoretical rate of convergence propor-

tional to O(a2) if the light-quark action is O(a)-improved and cstat
V

is properly tuned.
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Figure 9 illustrates the approach of ξ to the continuum, corresponding to the choice of pa-

rameters θ1 = 0.5, θ2 = 1.0 and LmR = 0.24. The left plot refers to the non-perturbative

choice of cstat
V

provided by eqs. (5.5)–(5.8); the right plot shows the unimproved case with

cstat
V

= 0. Similar plots are obtained with different θ-angles and mR.

We observe that all the static actions give comparable results and statistical uncer-

tainties at finite lattice spacing, save for the EH one in the improved case. If we look at the

right plot, we note that the total variation of ξ in the simulation region is only about 5%.

This can be attributed to a significant cancellation of the O(a) lattice artefacts between

numerator and denominator, which on one hand gives ξ a good scaling behaviour also in

absence of operator improvement, but on the other makes it rather insensitive to a change

of cstat
V

. Nevertheless, we find that once cstat
V

is switched on, the total variation of ξ in the

simulation region drops to 3%, corresponding to a flatter approach to the continuum. As

it might be expected, the strongest effect of cstat
V

is at L/a = 8, where the central values of

the lattice points are shifted by 1.5-2.9%.

7. Conclusions

In this paper we have studied the renormalization of the static vector current and its O(a)-

improvement in the quenched approximation of lattice QCD. Quark degrees of freedom are

described by lattice Wilson-type fermions in the light sector and various discretizations of

the static fermions, including those introduced some years ago by the ALPHA Collaboration

(APE, HYP1, HYP2).

Owing to the chiral symmetry of the continuum theory, the RG running of the static

vector and axial currents coincides. Since the latter has been extensively studied in the

literature, a complete description of the renormalization factor Zstat
V

is achieved by simply

fixing the ratio of the two renormalized currents at a given reference scale (in our study

µ−1
ref = 2Lmax = 1.436r0). To this aim we make use of an appropriate axial Ward identity

in the framework of the Schrödinger functional. The enforcement of chiral symmetry up

to O(a2)-terms provides us with a lever to tune the improvement coefficient cstat
V

. Unfor-

tunately, the resulting determination is not fully non-perturbative, since it relies upon a

previous computation of cstat
A

which is only effective, i.e. correct up to O(g4
0)-terms. With

regard to the numerical results, a comparison of the Monte Carlo simulations with a one-

loop perturbative calculation shows that large higher-order contributions affect cstat
V

within

the explored region of the gauge coupling (6.0 ≤ β ≤ 6.5). On the other hand, we observe

a good agreement between the non-perturbative determination of the O(a)-improved ratio

Zstat
A

/Zstat
V

and its one-loop approximation.

The O(a)-improvement programme is carried out at non-zero light-quark mass via

the introduction of a second improvement coefficient bstat
V

. This is tuned on the basis

of an independent condition involving a boundary-to-boundary three-point correlator of

the static vector current, out of the chiral limit. The coefficient bstat
V

is studied at one-

loop order in perturbation theory for the EH and APE actions. To extend our study

to the HYP actions, where perturbation theory is not easily handled, we adopt a mixed

strategy: the difference ∆bstat
V

of the improvement coefficients between two different static
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discretizations is computed non-perturbatively and the one-loop estimate with the APE

action is used to isolate bstat
V

in the HYP1 and HYP2 cases up to O(g4
0)-terms. It has to

be said that a direct comparison of the non-perturbative estimate of (∆bstat
V

)EH−APE with

its one-loop value shows that the amount of such O(g4
0)-terms could be non-negligible and

hard to control. Nevertheless, this problem seems to characterize the EH fermions more

than their statistically improved versions, for which a better agreement with perturbation

theory is expected on the basis of the experience gathered by the ALPHA Collaboration

in previous studies of the static axial current.

Anyway, one should always keep in mind that bstat
V

enters the improved static vector

current accompanied by a factor of amq, which is rather small at light-quark masses up to

the strange one and the commonly affordable lattice spacings. In this sense, it constitutes

a subdominant contribution, which is not expected to have a crucial effect on the scaling

behaviour of phenomenological matrix elements of the static vector current with external

Bd- or Bs-meson states.
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A. Additional tables

L/a c
stat(1)
V,EH |(θ1,θ2)=(0.0,0.5) c

stat(1)
V,EH |(θ1,θ2)=(0.0,1.0) c

stat(1)
V,EH |(θ1,θ2)=(0.5,1.0)

4 −1.21318905506 × 10−1 −5.56860354782 × 10−2 −1.14115660920 × 10−2

6 −8.05799533807 × 10−2 −3.56181870915 × 10−2 −7.37458670533 × 10−3

8 −5.45943895816 × 10−2 −2.14296960443 × 10−2 −1.11423236142 × 10−3

10 −4.17792968218 × 10−2 −1.58212044566 × 10−2 −1.04666543337 × 10−4

12 −3.39132673910 × 10−2 −1.27133821723 × 10−2 4.11644560339 × 10−5

14 −2.84872496446 × 10−2 −1.06310641447 × 10−2 7.08421808901 × 10−5

16 −2.44775851326 × 10−2 −9.08817318086 × 10−3 1.12471960839 × 10−4

18 −2.13776226148 × 10−2 −7.87813705828 × 10−3 1.78912840345 × 10−4

20 −1.89020434292 × 10−2 −6.89431955817 × 10−3 2.63691059080 × 10−4

22 −1.68756672083 × 10−2 −6.07394710919 × 10−3 3.59366131023 × 10−4

24 −1.51841738803 × 10−2 −5.37672581715 × 10−3 4.60431552309 × 10−4

26 −1.37494665187 × 10−2 −4.77520683457 × 10−3 5.63221867541 × 10−4

28 −1.25162477343 × 10−2 −4.24986678175 × 10−3 6.65402844941 × 10−4

30 −1.14441713189 × 10−2 −3.78634326450 × 10−3 7.65528806751 × 10−4

32 −1.05031230408 × 10−2 −3.37380171813 × 10−3 8.62744511694 × 10−4

Table 6: Three different determinations of the one-loop contribution to cstat
V

with EH static

fermions according to the improvement condition eq. (4.3). Numbers refer to the topology T = 2.

L/a c
stat(1)
V,APE |(θ1,θ2)=(0.0,0.5) c

stat(1)
V,APE |(θ1,θ2)=(0.0,1.0) c

stat(1)
V,APE |(θ1,θ2)=(0.5,1.0)

4 −1.22686673290 × 10−1 −6.58409712344 × 10−2 −2.74941292579 × 10−2

6 −7.75983902179 × 10−2 −3.92522157408 × 10−2 −1.51643269042 × 10−2

8 −4.86871345865 × 10−2 −2.02408469320 × 10−2 −2.81570404300 × 10−3

10 −3.41205392729 × 10−2 −1.17290094210 × 10−2 1.82812424278 × 10−3

12 −2.51362502419 × 10−2 −6.77983138946 × 10−3 4.26399256380 × 10−3

14 −1.89433155853 × 10−2 −3.44517803597 × 10−3 5.84345845792 × 10−3

16 −1.43758718224 × 10−2 −9.98819307355 × 10−4 6.99872560335 × 10−3

18 −1.08514987939 × 10−2 8.93569798294 × 10−4 7.90351127450 × 10−3

20 −8.04166342915 × 10−3 2.41124455308 × 10−3 8.64240269108 × 10−3

22 −5.74490428783 × 10−3 3.66095340524 × 10−3 9.26291571099 × 10−3

24 −3.83000893356 × 10−3 4.71111391836 × 10−3 9.79458495765 × 10−3

26 −2.20751253184 × 10−3 5.60799879909 × 10−3 1.02571343800 × 10−2

28 −8.14172229101 × 10−4 6.38421491915 × 10−3 1.06644451570 × 10−2

30 3.96087085934 × 10−4 7.06350798921 × 10−3 1.10266744094 × 10−2

32 1.45762004875 × 10−3 7.66362155507 × 10−3 1.13514918436 × 10−2

Table 7: Three different determinations of the one-loop contribution to cstat
V

with APE static

fermions according to the improvement condition eq. (4.3). Numbers refer to the topology T = 2.
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L/a R
(1)
EH(θ = 0.0) R

(1)
EH(θ = 0.5) R

(1)
EH(θ = 1.0)

4 3.30112791641 × 10−2 5.07890218387 × 10−2 5.32679355672 × 10−2

6 3.95982301495 × 10−2 4.76144903008 × 10−2 4.87823906356 × 10−2

8 5.12452416492 × 10−2 5.53446719297 × 10−2 5.54812561435 × 10−2

10 5.62747608283 × 10−2 5.87919096424 × 10−2 5.88023249365 × 10−2

12 5.88913680345 × 10−2 6.05967926872 × 10−2 6.05933519321 × 10−2

14 6.04217811204 × 10−2 6.16508787417 × 10−2 6.16457789162 × 10−2

16 6.13931315301 × 10−2 6.23177973609 × 10−2 6.23106907219 × 10−2

18 6.20478428063 × 10−2 6.27659838840 × 10−2 6.27559138013 × 10−2

20 6.25099352992 × 10−2 6.30815917333 × 10−2 6.30682137670 × 10−2

22 6.28481782065 × 10−2 6.33122587177 × 10−2 6.32956656095 × 10−2

24 6.31031850685 × 10−2 6.34860186764 × 10−2 6.34665140076 × 10−2

26 6.33001903502 × 10−2 6.36202279760 × 10−2 6.35981895849 × 10−2

28 6.34555419363 × 10−2 6.37260940915 × 10−2 6.37019044423 × 10−2

30 6.35802087156 × 10−2 6.38111147867 × 10−2 6.37851294648 × 10−2

32 6.36817718015 × 10−2 6.38804596546 × 10−2 6.38529951792 × 10−2

Table 8: Three different determinations of the one-loop contribution to the O(a)-improved WI

with EH static fermions. Numbers refer to the topology T = 2.

L/a R
(1)
APE(θ = 0.0) R

(1)
APE(θ = 0.5) R

(1)
APE(θ = 1.0)

4 7.83613664415 × 10−2 9.63395380897 × 10−2 1.02312037738 × 10−1

6 8.29999758507 × 10−2 9.07196239420 × 10−2 9.31211717407 × 10−2

8 9.43090648772 × 10−2 9.79649261355 × 10−2 9.83100792082 × 10−1

10 9.92568717719 × 10−2 1.01312590309 × 10−1 1.01130674952 × 10−1

12 1.01847718258 × 10−1 1.03111765757 × 10−1 1.02755357444 × 10−1

14 1.03368358402 × 10−1 1.04185677884 × 10−1 1.03765015807 × 10−1

16 1.04335470132 × 10−1 1.04878533404 × 10−1 1.04436312823 × 10−1

18 1.04988139034 × 10−1 1.05352674754 × 10−1 1.04907826792 × 10−1

20 1.05449158322 × 10−1 1.05692363172 × 10−1 1.05253903968 × 10−1

22 1.05786795092 × 10−1 1.05944779845 × 10−1 1.05517080769 × 10−1

24 1.06041438462 × 10−1 1.06138003224 × 10−1 1.05723087837 × 10−1

26 1.06238214652 × 10−1 1.06289597523 × 10−1 1.05888244607 × 10−1

28 1.06393415756 × 10−1 1.06411014965 × 10−1 1.06023326229 × 10−1

30 1.06517980204 × 10−1 1.06509988458 × 10−1 1.06135695966 × 10−1

32 1.06619471630 × 10−1 1.06591897793 × 10−1 1.06230536156 × 10−1

Table 9: Three different determinations of the one-loop contribution to the O(a)-improved WI

with APE static fermions. Numbers refer to the topology T = 2.
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L/a b
stat(1)
V,EH (θ = 0.0) b

stat(1)
V,EH (θ = 0.5) b

stat(1)
V,EH (θ = 1.0)

6 −1.92494990552 × 10−1 7.59451390152 × 10−2 7.94433253811 × 10−2

8 −1.28284962759 × 10−1 7.19668221779 × 10−2 9.82580984223 × 10−2

10 −7.83097066265 × 10−2 6.93670764950 × 10−2 8.92282752595 × 10−2

12 −5.20449399705 × 10−2 6.60882882658 × 10−2 8.20217785512 × 10−2

14 −3.59939921230 × 10−2 6.27858498787 × 10−2 7.59502707254 × 10−2

16 −2.52419762755 × 10−2 5.97829596381 × 10−2 7.09345102910 × 10−2

18 −1.76143672046 × 10−2 5.71059870738 × 10−2 6.67548992369 × 10−2

20 −1.19885067448 × 10−2 5.47150817151 × 10−2 6.32117968093 × 10−2

22 −7.71840193796 × 10−3 5.25663880980 × 10−2 6.01574097982 × 10−2

24 −4.40467430491 × 10−3 5.06225291197 × 10−2 5.74858429769 × 10−2

26 −1.78765598057 × 10−3 4.88528309736 × 10−2 5.51202560392 × 10−2

28 3.08255934246 × 10−4 4.72321849465 × 10−2 5.30036608571 × 10−2

30 2.00560511473 × 10−3 4.57399574759 × 10−2 5.10928394946 × 10−2

32 3.39251992852 × 10−3 4.43591299385 × 10−2 4.93543727896 × 10−2

34 4.53369168047 × 10−3 4.30755529827 × 10−2 4.77620635919 × 10−2

Table 10: Three different determinations of the one-loop contribution to bstat
V

with EH static

fermions according to the improvement condition eq. (6.13).

L/a b
stat(1)
V,APE (θ = 0.0) b

stat(1)
V,APE (θ = 0.5) b

stat(1)
V,APE (θ = 1.0)

6 −1.92340408686 × 10−1 7.38125998350 × 10−2 7.32869781736 × 10−2

8 −1.36845655003 × 10−1 6.16212128505 × 10−2 8.47024088104 × 10−2

10 −9.27641005323 × 10−2 5.36113971906 × 10−2 7.11683168091 × 10−2

12 −7.03192609445 × 10−2 4.68591075301 × 10−2 6.11505675084 × 10−2

14 −5.67994367873 × 10−2 4.12586767144 × 10−2 5.32267457567 × 10−2

16 −4.77974262206 × 10−2 3.66636780399 × 10−2 4.69184320708 × 10−2

18 −4.14377364146 × 10−2 3.28289740025 × 10−2 4.17877409334 × 10−2

20 −3.67710201232 × 10−2 2.95586046439 × 10−2 3.75125941270 × 10−2

22 −3.32534218174 × 10−2 2.67170066138 × 10−2 3.38739675354 × 10−2

24 −3.05477831878 × 10−2 2.42109755463 × 10−2 3.07226742530 × 10−2

26 −2.84338924925 × 10−2 2.19744102751 × 10−2 2.79543183872 × 10−2

28 −2.67622184958 × 10−2 1.99587562440 × 10−2 2.54935704579 × 10−2

30 −2.54281229985 × 10−2 1.81272438403 × 10−2 2.32844980335 × 10−2

32 −2.43562070602 × 10−2 1.64513560157 × 10−2 2.12845506743 × 10−2

34 −2.34911031398 × 10−2 1.49085018459 × 10−2 1.94607725049 × 10−2

Table 11: Three different determinations of the one-loop contribution to bstat
V

with APE static

fermions according to the improvement condition eq. (6.13).
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(θ1, θ2) β cstat
V,EH

cstat
V,APE

cstat
V,HYP1

cstat
V,HYP2

(0.0,0.5) 6.0219 0.756(22) 0.478(18) 0.513(18) 0.553(18)

6.1628 0.577(18) 0.337(14) 0.360(14) 0.409(14)

6.2885 0.548(17) 0.334(14) 0.359(14) 0.416(14)

6.4956 0.399(18) 0.240(14) 0.261(14) 0.324(14)

(0.0,1.0) 6.0219 0.707(10) 0.433(8) 0.467(8) 0.508(8)

6.1628 0.566(8) 0.328(6) 0.352(7) 0.402(7)

6.2885 0.532(8) 0.318(6) 0.342(6) 0.398(7)

6.4956 0.406(8) 0.242(7) 0.263(7) 0.327(7)

(0.5,1.0) 6.0219 0.690(8) 0.419(6) 0.452(7) 0.493(6)

6.1628 0.562(6) 0.325(5) 0.349(5) 0.399(5)

6.2885 0.527(6) 0.312(5) 0.336(5) 0.392(5)

6.4956 0.409(6) 0.242(5) 0.264(5) 0.328(5)

Table 12: Non-perturbative determinations of cstat
V

for various gauge couplings and static actions.

Different choices of (θ1, θ2) correspond to independent definitions of the improvement coefficient.

θ β [Zstat
A

/Zstat
V

]EH [Zstat
A

/Zstat
V

]APE [Zstat
A

/Zstat
V

]HYP1 [Zstat
A

/Zstat
V

]HYP2

0.0 6.0219 0.9549(13) 0.9611(13) 0.9662(13) 0.9643(13)

6.1628 0.9564(10) 0.9725(10) 0.9771(9) 0.9785(10)

6.2885 0.9585(8) 0.9799(9) 0.9837(9) 0.9859(10)

6.4956 0.9527(7) 0.9823(7) 0.9847(7) 0.9890(6)

0.5 6.0219 0.9549(13) 0.9601(12) 0.9651(12) 0.9633(12)

6.1628 0.9562(10) 0.9723(10) 0.9769(10) 0.9784(9)

6.2885 0.9582(8) 0.9796(8) 0.9834(7) 0.9856(9)

6.4956 0.9528(6) 0.9823(7) 0.9847(6) 0.9890(7)

1.0 6.0219 0.9540(11) 0.9601(11) 0.9651(11) 0.9633(11)

6.1628 0.9561(9) 0.9723(10) 0.9769(10) 0.9784(8)

6.2885 0.9583(8) 0.9796(7) 0.9834(7) 0.9856(9)

6.4956 0.9528(6) 0.9823(6) 0.9847(5) 0.9890(6)

Table 13: Non-perturbative determinations of the O(a)-improved ratio Zstat
A

/Zstat
V

for various

gauge couplings and static actions. Different choices of θ correspond to independent definitions of

the WI.

– 25 –



J
H
E
P
0
1
(
2
0
0
8
)
0
2
1

θ β (∆bstat
V

) EH−APE (∆bstat
V

) EH−HYP1 (∆bstat
V

) EH−HYP2

0.0 6.0219 0.2177(14) 0.2098(15) 0.2967(18)

6.1628 0.2122(17) 0.2091(18) 0.2925(21)

6.2885 0.2130(22) 0.2123(22) 0.2953(26)

6.4956 0.1869(37) 0.1890(39) 0.2626(11)

θ β (∆bstat
V

)APE−HYP1 (∆bstat
V

)APE−HYP2 (∆bstat
V

)HYP1−HYP2

0.0 6.0219 -0.0079(7) 0.0787(10) 0.0865(6)

6.1628 -0.0031(7) 0.0800(10) 0.0831(6)

6.2885 -0.0008(8) 0.0820(12) 0.0828(7)

6.4956 0.0021(11) 0.0756(17) 0.0735(10)

θ β (∆bstat
V

) EH−APE (∆bstat
V

) EH−HYP1 (∆bstat
V

) EH−HYP2

0.5 6.0219 0.2094(18) 0.1987(19) 0.2826(23)

6.1628 0.2020(24) 0.1983(25) 0.2793(28)

6.2885 0.2050(28) 0.2018(30) 0.2828(34)

6.4956 0.1789(51) 0.1777(52) 0.2501(57)

θ β (∆bstat
V

)APE−HYP1 (∆bstat
V

)APE−HYP2 (∆bstat
V

)HYP1−HYP2

0.5 6.0219 -0.0106(9) 0.0729(13) 0.0835(7)

6.1628 -0.0036(10) 0.0771(14) 0.0807(8)

6.2885 -0.0032(11) 0.0776(15) 0.0808(8)

6.4956 -0.0004(15) 0.0720(21) 0.0724(12)

θ β (∆bstat
V

) EH−APE (∆bstat
V

) EH−HYP1 (∆bstat
V

) EH−HYP2

1.0 6.0219 0.1332(25) 0.1250(27) 0.2019(34)

6.1628 0.1301(30) 0.1270(30) 0.2018(34)

6.2885 0.1391(34) 0.1379(36) 0.2153(41)

6.4956 0.1284(63) 0.1285(64) 0.2013(68)

θ β (∆bstat
V

)APE−HYP1 (∆bstat
V

)APE−HYP2 (∆bstat
V

)HYP1−HYP2

1.0 6.0219 -0.0082(12) 0.0686(19) 0.0768(10)

6.1628 -0.0030(12) 0.0716(16) 0.0747(8)

6.2885 -0.0012(13) 0.0761(18) 0.0772(10)

6.4956 0.0001(17) 0.0728(24) 0.0727(13)

Table 14: Non-perturbative determinations of ∆bstat
V

for various gauge couplings and static actions.

Different choices of θ correspond to independent improvement conditions.
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